Controlling Effective Introns for Multi-Agent Learning by Genetic Programming
نویسندگان
چکیده
This paper presents the emergence of the cooperative behavior for multiple agents by means of Genetic Programming (GP). For the purpose of evolving the effective cooperative behavior, we propose a controlling strategy of introns, which are non-executed code segments dependent upon the situation. The traditional approach to removing introns was able to cope with only a part of syntactically defined introns, which excluded other frequent types of introns. The validness of our approach is discussed with comparative experiments with robot simulation tasks, i.e., a navigation problem and an escape problem.
منابع مشابه
Controlling Effective Introns for Multi-Agent Learning by means of Genetic Programming
This paper presents the emergence of the cooperative behavior for multiple agents by means of Genetic Programming (GP). For the purpose of evolving the effective cooperative behavior, we propose a controlling strategy of introns, which are non-executed code segments dependent upon the situation. The traditional approach to removing introns was able to cope with only a part of syntactically defi...
متن کاملMulti-agent control and intelligent sensor allocation with Reinforcement Learning and Genetic Programming
متن کامل
Multi-agent control and intelligent sensor allocation with Reinforcement Learning and Genetic Programming
متن کامل
Optimization of majority protocol for controlling transactions concurrency in distributed databases by multi-agent systems
In this paper, we propose a new concurrency control algorithm based on multi-agent systems which is an extension of majority protocol. Then, we suggest a clustering approach to get better results in reliability, decreasing message passing and algorithm’s runtime. Here, we consider n different transactions working on non-conflict data items. Considering execution efficiency of some different...
متن کاملSolving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization
This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000